Hero image

520Uploads

200k+Views

107k+Downloads

Water pollution
IETEducationIETEducation

Water pollution

(0)
This starter activity provides a quick, engaging introduction to a lesson focusing on the link between water pollution and health by considering the role of engineers in providing us with healthy water supplies Water is crucial to human life, but it can also be a killer. Water contaminated with micro-organisms or chemicals, which if then used for drinking or cooking, is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The lesson therefore encourages students to think about the role of engineers in providing us with healthy water supplies and waste-water disposal systems. The activity also asks students to think more broadly about how engineers play a role in society, at times saving our lives. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science, geography and engineering. Activity: Considering the role of engineers in providing us with healthy water supplies Students will watch our Safe drinking water film, and discuss how engineers play a role in saving peoples lives. Following this, students can work through our Running water handout, which provides information about the problems associated with water supplies and water pollution and how engineers work to solve these problems so that we can access clean water. Finally, students can take our quiz on the importance of water to human life. Download our activity overview for a detailed lesson plan for teaching students about design materials. The engineering context To help ensure that we can access clean water freely, engineers can develop filtration systems to remove impurities, build water networks for distribution, and use chemical treatments to purify waste. They can also make reservoirs to make sure that there’s a reliable water supply as well as build wastewater treatment systems protect the environment. In areas with limited freshwater, engineers even design desalination plants to transform seawater into drinking water. Suggested learning outcomes At the end of this lesson students will be aware that clean water supplies and effective methods of waste-water disposal are essential for human health. They’ll also understand some of the methods that engineers create and use to make water safe. Download our activity sheet and related teaching resources for free The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including video clips), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Design a new robot that could help people in the future
IETEducationIETEducation

Design a new robot that could help people in the future

(0)
In this activity, learners will design a new robot that could help people in the future. Programmable robotic systems are becoming an important part of industrial developments in design and technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly. As such, this lesson asks students to explore how electronic and mechanical systems can be integrated to create functioning products like a robot. This lesson can be followed by Programming the robot buggy with the BBC micro:bit, where learners use the micro:bit to develop a robotic buggy that can successfully navigate a maze or path. These resources are part of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in computing and design & technology (D&T). Activity: Designing a new robot that could help people in the future Students will first look at existing robots that are used to help people in our Future Robots presentation and then brainstorm how robots could further assist people in the future. Learners are tasked with designing a robot that’s unique. Their robot must include both electronic (e.g., programmable circuit board) and mechanical (e.g., motors for movement) parts and they students must explain how these systems work together. They can use our Future Robot Design handout to draw their robots, adding notes explaining how the electronic and mechanical systems function. Students should use technical language and justify their design decisions (explaining input/output placement, materials, construction methods, etc.). Download our activity overview for a detailed lesson plan on how to design a robot. The engineering context Robotics is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the programme of study for Design and Technology at key stage 3. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners. Suggested learning outcomes Students will be able to design a robot that can help people in the future. They’ll also improve their understanding of how electronic and mechanical systems can be integrated to create functioning products. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation for free. Please do share your highlights with us @IETeducation.
Communications infrastructure
IETEducationIETEducation

Communications infrastructure

(0)
This activity makes students aware that when they watch TV, or use the phone, there is a huge expensive communications infrastructure that needs to be paid for and maintained. Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science and design & technology (D&T). Activity: Learning about the infrastructure technology that keeps phones, computers and WiFi working This activity gives students an understanding of the technological infrastructure that lets mobile phones and other communication devices connect to one another. Students will first view our infrastructure presentation, which explains the various components needed for communication networks (e.g., cell towers, base stations, cables, etc.). They will then investigate online how mobile phone networks and other communications systems work. Students must create either a flow chart or a diagram that shows how these networks operate, explaining the key steps involved in the process. Download our activity overview for a detailed lesson plan on infrastructure. The engineering context We need a robust infrastructure network if we’re to connect people and businesses regardless of their location. Engineers must work to ensure fast and dependable data transmission for our TV, radio and internet signals – much of which drives the entertainment that we all enjoy. It also underpins communication and data transfer for much of our essential services besides giving us a comfortable standard of living. Suggested learning outcomes In this activity, students will learn about artificial and geostationary satellites and their uses. They’ll make decisions about the use of modern communications technology based on social, environmental, and economic factors. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation and please do share your highlights with us @IETeducation.
Killer water
IETEducationIETEducation

Killer water

(0)
Identifying the ways in which water can be hazardous to human health This activity focuses on the link between water and health. It encourages students to think about the role of engineers in providing us with healthy water supplies and waste-water disposal systems by exploring the different ways in which water can be hazardous (and even fatal) to human health. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science. The lesson can be accompanied by the Water pollution and Spreading disease activities. **Activity: Identifying the ways in which water can be hazardous to human **health This activity gives students a quick, engaging introduction to the very real dangers of unclean water. It begins with students viewing our DHMO hazard statement presentation, which playfully lists various dangerous properties of…water! Once students realise that DHMO is simply water, they will view our Safe Drinking Water video which reinforces the very real dangers of water. Students then work in groups to analyse different ways water poses a risk to human health, and the class compiles a list of these hazards for further discussion. Students can also complete our World water quiz worksheet. Download our activity overview for a detailed lesson plan on the dangers of unclean water. The engineering context Engineers play a vital role in making sure that our water is safe to drink. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Lack of efficient drainage systems and flood defences can lead to catastrophic flooding, as has been seen in several different areas of the world in the past few years. Suggested learning outcomes Once this lesson is complete students will understand that unclean water is the world’s number one killer. They’ll be able to explain that clean water supplies and effective methods of waste-water disposal are essential for human health as well as be able to state the chemical properties of water. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including video clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
Product analysis with the BBC Microbit
IETEducationIETEducation

Product analysis with the BBC Microbit

(0)
Analyse an existing personal alarm system This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will carry out an analysis of an existing, commercially available personal alarm system. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
What is a program?
IETEducationIETEducation

What is a program?

(0)
Understand the importance of clear instructions when developing a program In this starter activity, students are introduced to what is meant by a program through our fun maze route activity. For the purposes of this activity a program is a set of step-by-step instructions that must be followed. Learners will therefore be asked to create a set of instructions that will solve a problem. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT). Activity: Understanding the importance of clear instructions when developing a program In this activity students will complete a practical activity that will help them to understand what programme is. Learners will get into pairs and, with one person having to navigate their (blindfolded) partner through a simple maze by giving them verbal instructions. After this activity, there will be a class discussion on the importance of clear and concise instructions. Students will then reflect on what a programmable system is (i.e., a set of instructions) and discuss how this links to the activity that they’ve just completed. Download our activity overview for an introductory lesson on programmes for free! The engineering context Programming is an essential skill in the 21st century world. From mobile phones and tablet computers to large passenger aircrafts, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family. Suggested learning outcomes By the end of this lesson students will learn that a program is simply a set of step-by-step instructions. They will also understand the importance clear instructions when developing a program. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free! Please do share your highlights with us @IETeducation
Make a paper house
IETEducationIETEducation

Make a paper house

(0)
In this activity learners will design, make and assemble a fold out pop-up structure that shows a self-contained, four room dwelling. This activity could be used as a main lesson activity to teach learners about the design of folding structures using graphic materials; alternatively, it could be used as an introduction to designing for a client, where the learners could be given a target group such as wheelchair users or a young family. This could also be used as one of several activities within a wider scheme of learning focussing on structures and Design for Living. Resources required: Scissors Paper or Card Glue Rulers Pens, coloured pencils or paint Paperclips Optional: three pre-made rooms Optional: a pre-made assembled example Download our activity sheet and other related resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
How safe is personal transport?
IETEducationIETEducation

How safe is personal transport?

(0)
Discuss safety issues in personal transport and analyse data to work out which form of personal transport is currently the least safe Personal transport is becoming safer as technological advancements are made and more and more safety features are designed. In this fun STEM activity students will consider what safety features are in use today. Students will first name some personal transport methods, including those they use. In pairs they can discuss any safety features of these methods, why they are important and then they will rank the transport systems in order of how safe they think they are. The ‘Safety statistics A’ handout includes a chart which shows the proportion of reported road casualties by road user type and severity in Great Britain in 2012. The students will then interpret the data and write down what it shows. They can then compare this to the ranking they did in the discussion earlier. The handout shows that car occupants and pedestrians are the most common types of road casualties. How do you think safety can by improved for car occupants and pedestrians? Ask the students to think about what safety measures already exist and then ask them to think about what features cars should have in the future. This engaging activity that is the perfect way for KS3 students to develop their critical thinking skills. How long will this activity take? Approximately 30-59 minutes to complete. The engineering context Car and road safety engineers are professionals who are responsible for designing and developing vehicles and road systems that are safe for drivers, passengers, and pedestrians. They work on various aspects of vehicle and road safety, including crash testing, airbag seatbelt development, pedestrian protection, and traffic control systems. These engineers use their knowledge of physics, mechanics, and materials science to develop innovative solutions to improve vehicle and road safety. They also work closely with government agencies, automakers, and other organisations to develop and enforce safety regulations and standards. The work of car and road safety engineers is vital to ensuring the safety of drivers, passengers, and pedestrians on our roads. Suggested learning outcomes By the end of this activity students will be able to interpret data from a chart, discuss the importance of safety features in personal transport and identify car and road safety features. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Chinese dragon mask
IETEducationIETEducation

Chinese dragon mask

(0)
Design and make a Chinese dragon mask. In this activity learners will use the theme of Chinese New Year to produce a Chinese dragon mask. They will investigate the importance of colour and the dragon to Chinese culture and use this information in their products. They will make two masks, one using an existing template, and another from their own design. Dragons play an important role in Chinese culture, such as the zodiac, dragon dances, art and the dragon boat festival. The dragon is considered to bring good fortune, harvest and prosperity. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Scissors Pencils Coloured pens Glue and sticky tape The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Design a personal heart monitoring system
IETEducationIETEducation

Design a personal heart monitoring system

(0)
Programme the system using the accelerometer and LED display This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. There are many reasons to monitor heart rate. For example: There are 2.7 million people in the UK currently suffering from heart problems. The quicker these problems can be found and treated the better the chance of a full recovery. Athletes measure their heart rate during training to ensure that they are training in their optimum physical range. In this unit, learners will use the BBC micro:bit to develop a prototype for a personal heart monitoring system. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable system using the BBC micro:bit’s inbuilt accelerometer to detect motion created by the pumping of the heart. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Which medical imaging technique? - Practical
IETEducationIETEducation

Which medical imaging technique? - Practical

(0)
Investigate aspects of biomedical signal processing The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Activity info, teachers’ notes and curriculum links In this practical session students investigate aspects of signal processing. Working in teams, students convert an analogue brain signal into a digital format and transmit it across the classroom to another team using flashes from the LED on the Digital Communicator that they will need to build. The other team will record the digital format and rebuild the original waveform from that information. This activity can be used as a hands-on extension to the ‘Which Imaging Technique?’ activity (see Related activities section below). The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Make a night-light circuit
IETEducationIETEducation

Make a night-light circuit

(0)
Design and make a solar powered night-light circuit In this engaging and practical STEM activity, designed for secondary school students, learners will investigate the photovoltaic effect by designing and making a solar power night-light circuit. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This could be used as a short design and make project in Electronics or Product Design within Design and Technology. It could be extended into a longer project using the ‘Design Guide (handout)’ to provide a structure for the sequence of tasks to be carried out. Students should be divided into pairs or small teams. Their design brief is to design and manufacture a prototype solar powered night-light. The prototype should be powered by solar energy, produce no waste by-product with normal use, provide an appropriate illumination for a task (to be identified), illuminate automatically when the light level drops (below an identified level) and it should be manufactured from reused materials, where possible. Tools/resources required Access to appropriate CAD software for circuit modelling and development Modular electronics kits or prototype boards (breadboards), as appropriate Transistor sensor circuit help (handout) Design Guide (handout) A range of components to manufacture the circuits Suggested learning outcomes By the end of this activity students will have an understanding of how photovoltaic cells work, how they can be used and the impact of using photovoltaic cells in aesthetic, economic, and environmental issues. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigate the photovoltaic effect
IETEducationIETEducation

Investigate the photovoltaic effect

(0)
Learn how photovoltaic cells work and investigate the photovoltaic effect In this engaging STEM activity, designed for secondary school students, learners will discover how photovoltaic cells work, how they differ from solar thermal cells, and they will investigate the photovoltaic effect. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This is a short activity which involves investigating the photovoltaic effect. It could be used as a starter activity in Electronics or Product Design within Design and Technology, or to provide students with extended background information during the design and make project. It could also be used as a starter in Science. Students will be given the ‘What is a photovoltaic cell’ handout. They should consider the following questions: How do photovoltaic cells differ from solar thermal cells? What commonly available products use photovoltaic cells? What are the advantages and disadvantages of photovoltaic cells? What factors would affect the positioning of a photovoltaic cell? Tools/resources required Internet access Ideally, small operational models of solar thermal and photovoltaic cells that the students can handle Suggested learning outcomes By the end of this activity students will be able to list the two types of solar panel and give examples of how they are used, and they will be able to explain how photovoltaic cells work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Prosthetics and ethics
IETEducationIETEducation

Prosthetics and ethics

(0)
With the development of prosthetics progressing all the time, this engineering activity for kids will enable students to find out about the systems and controls, electronics and engineering behind the ever-advancing technologies in prosthetics and body centric communications. This is a great resource to create educational discussions on the ethics of medical robots, body centric antenna as well as prosthetics. Activity introduction Body centric communications have abundant applications in personal healthcare, smart homes, personal entertainment, identification systems, space exploration and military. This topic investigates the driving technology behind body centric communications, explores current health applications of these devices, possibilities for the future and the ethical issues surrounding these advancements. In this activity students are introduced to how the present body centric antenna, plus prosthetic technology, could be compared to science fiction ‘cyborgs’. Students will also be asked to discuss ethical issues around this idea. You could start the discussion by focusing on the positive achievements that are possible using BCAs and prosthetic devices. Then you could progress to the more sinister cyborg possibilities. Draw the discussion together in a plenary and seek a class consensus. Students can use different ethical positions to look at the issues. How would you consider the issues from a utilitarian viewpoint? How about from rights-based, moral duty or selfish ethical positions? As an extension you can run a debate getting the students to adopt contrasting ethical standpoints in favour for and against Cybermen. The engineering context Body centric communications refers to any communication on, within or around the body using wireless technology. Engineers play a key role in the advancement of healthcare as they create access to these life-changing technologies. Suggested learning outcomes By the end of this STEM activity students will understand how an antenna turns radio frequency radiation into a voltage and vice versa, they will understand the role of antenna in electronic communications systems. They will also be able to consider ethical standpoints on using advanced technology to control prosthetics. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
What is aerodynamics?
IETEducationIETEducation

What is aerodynamics?

(0)
Understanding aerodynamics by making and testing an aerofoil Aerofoils are designed to allow aircraft to fly. The design of these is crucial to minimise drag and increase lift. This is one of a set of resources produced in conjunction with the engineering company Arconic. The resources are designed to support teaching of key engineering concepts at both KS3 and KS4, including the new GCSE in Engineering. This resource focuses on understanding aerodynamics and making a simple aerofoil. Students will learn about the terms lift, drag, and thrust and how these apply to aircraft. This engaging activity will build knowledge of aerodynamics theory and how this can be applied. This could be used as a one-off main lesson activity, as an introductory lesson to a wider unit of work focusing on aerodynamics or as part of a scheme on aircraft design using all of the resources developed in association with Arconic. It could also be used to support our existing IET Faraday resources. This activity can be completed as individuals or in small groups. A small piece of paper (A5) would be suitable to make the aerofoil. Air could be applied by blowing or using an electric fan on a low setting. The aerofoil could also be attached to the desk with a piece of spring during the testing to prevent it from moving backwards and so that flight can be more easily observed. This could be fed through the space inside the aerofoil, and taped to the desktop at both ends, allowing some slack so that it can raise/fly. Alternatively, a wood dowel could be inserted loosely through a hole made in the top and bottom of the aerofoil. This activity will take approximately 50-60 minutes to complete. Tools/resources required Projector/Whiteboard Small pieces of paper or thin card Tape, e.g. masking tape String Suggested learning outcomes By the end of this activity students will have an understanding of the terms lift, drag and thrust, they will have an understanding of how an aerofoil works and they will be able to make and test a simple aerofoil design. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Careering towards the future
IETEducationIETEducation

Careering towards the future

(0)
Explore the engineering careers that are available today, the potential rewards of these careers, how engineering has shaped our society and how engineering could transform the world we live in in the future. Depending upon the option selected, you can also investigate the influence of famous engineers/technologists of the past and people working in Engineering today. Part of the #IETLookAtMeNow campaign exploring the different ways that toys and imagination can represent a world of possibilities and invention to children. For engineers and scientists, the possibilities and invention never end. They are proof that our toys and dreams today impact our innovations tomorrow.
Modelling methods
IETEducationIETEducation

Modelling methods

(0)
Secondary classroom poster where students can find out how designers use models to understand how their ideas will look and function. Download the single poster or order a full set of posters for free from the IET Education website.
FIRST LEGO League Challenge poster
IETEducationIETEducation

FIRST LEGO League Challenge poster

(0)
Secondary classroom poster where your students can discover the excitement of robotics and STEM with FIRST LEGO League. Download the single poster or order a full set of posters for free from the IET Education website.
Weather poster
IETEducationIETEducation

Weather poster

(0)
Primary classroom poster explaining more about the weather in different parts of the world. Order a full set of primary posters for free form the IET Education website.
How to make a simple electronic switch
IETEducationIETEducation

How to make a simple electronic switch

(0)
Learn how electronic switches work and assemble a variety of different switches in this fun and engaging STEM activity! This is a free resource that could be used in KS2 as an extension to an activity to introduce circuits, or to support a design and make project, such as the doorbell activity or adding a motor to the ‘cardboard cars’ activity. This activity will take approximately 70-90 minutes. Tools/resources required Projector/Whiteboard 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 4 metal split pin fasteners and 1 paper clip per pupil A5 pieces of card (can be cut to A6 for backing of the paper clip switch and 2 x A7 for the folded and foil switch) Metal foil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid or TTS Group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) Scissors Pre-made models of each switch, for demonstration Electronic switches An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. There are a wide variety of different types of switches that can be used. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will have an understanding that a complete circuit is required for electricity to flow, and they will be able to construct an electrical circuit. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation